Faster to light with simpler design: A new multimode flyback LED solution March 2016

Agenda

- 1 Trends and solutions
- IRS2982S in Infineon's LED portfolio
- IRS2982S features and benefits
- 4 IRS2982S value proposition
- 5 Summary
- 6 Support material

Agenda

- 1 Trends and solutions
- 2 IRS2982S in Infineon's LED portfolio
- 3 IRS2982S features and benefits
- 4 IRS2982S value proposition
- 5 Summary
- 6 Support material

More features, high performance/ cost IRS2982S fits perfectly

Cost effective analog solution

Speedy startup < 0.2 s

capable

simple GUI

Speedy startup < 0.5 s

DCM for efficient light

DCM for efficient light load

for small BOM

- load Burst mode minimizing standby loss
- Optimizing standby loss

Configurable on the fly,

High level integration

0 V- 10 V dimming

CC mode with optocoupler

Primary side output current control

- performance CC mode with optocoupler
 - Tolerable startup time $\sim 1 \text{ s}$

 - Flyback CrCM mode
 - Single stage PFC + flyback

Universal AC line input

Legacy solution

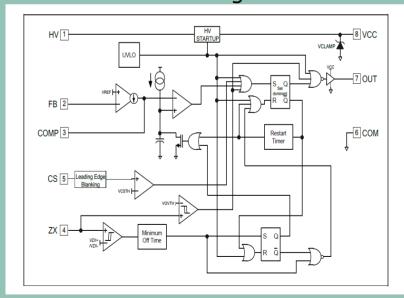
IRS2982S

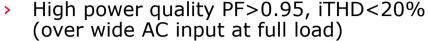
Digital solution

Highly integrated

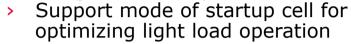
IRS2982S solves key challenges of LED lighting: highest efficiency, low power standby, fast time-to-light

Application





- mid range, high end LED drivers for outdoor, interior, office, industrial lightings
- Wide input voltage: 85- 305 V_{AC}


Block diagram

> Integrated startup cell, fast startup

High efficiency from three operating modes: CrCM, DCM and burst mode

> IC concept supports multiple topologies

Ideal for isolated flyback CV mode as well as non-isolated flyback with CC/CV modes

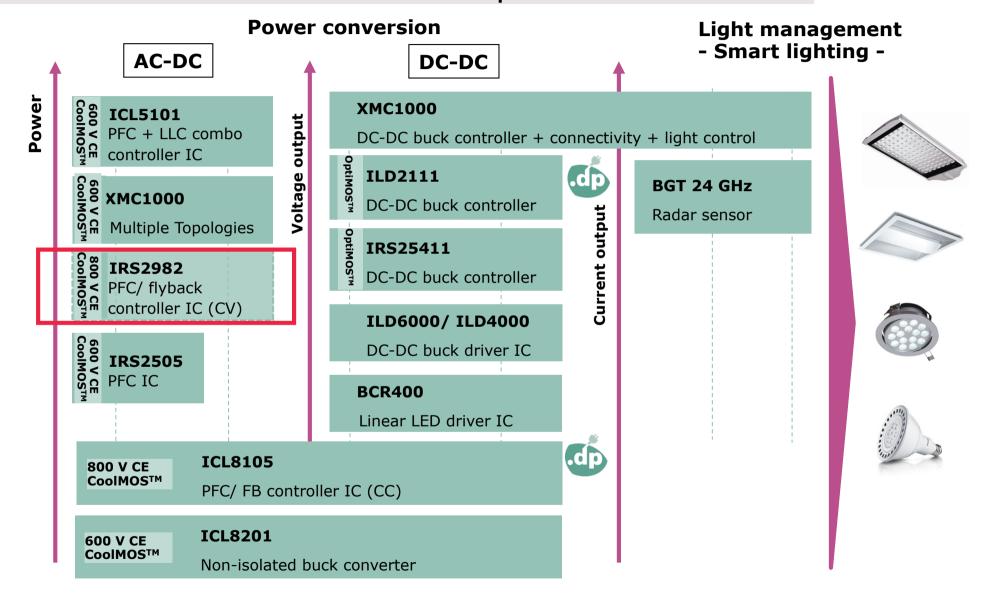
Supports universal input

Operates with AC or DC input

Over voltage protection

> Cycle by cycle over current protection

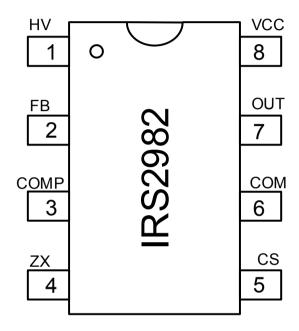
Minimum external components to support small form factor designs



Agenda

- 1 Trends and solutions
- IRS2982S in Infineon's LED portfolio
- 3 IRS2982S features and benefits
- 4 IRS2982S value proposition
- 5 Summary
- 6 Support material

IRS2982S in Infineon's LED portfolio



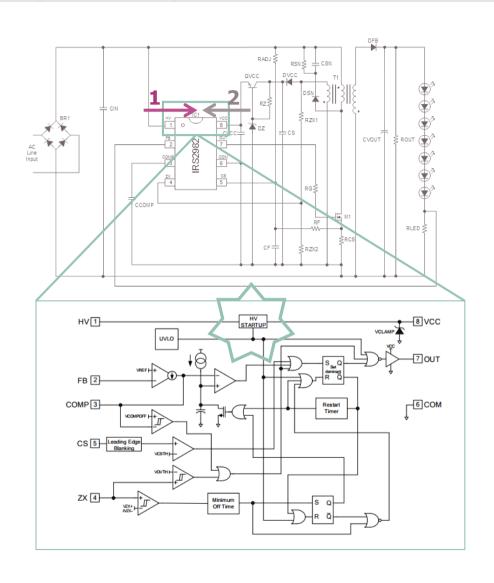
Agenda

- 1 Trends and solutions
- 2 IRS2982S in Infineon's LED portfolio
- IRS2982S features and benefits
- 4 IRS2982S value proposition
- 5 Summary
- 6 Support material

IRS2982S input/ output pins

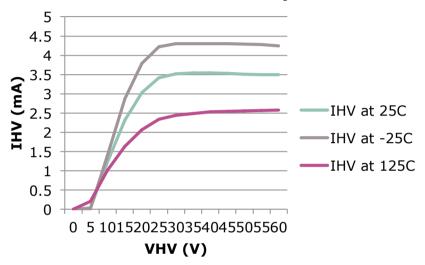
SOIC 8 package

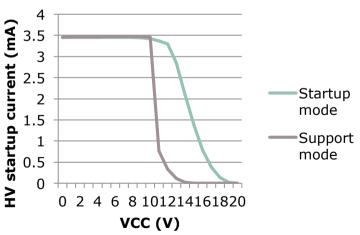
Symbol	Description				
HV	High voltage startup input				
FB	Feedback input				
COMP	Compensation and averaging capacitor input				
ZX	Zero-crossing & over-voltage detection input				
CS	Current sensing input				
COM	IC power & signal ground				
OUT	Gate driver output				
VCC	Logic & low-side gate driver supply				



IRS2982S features and benefits

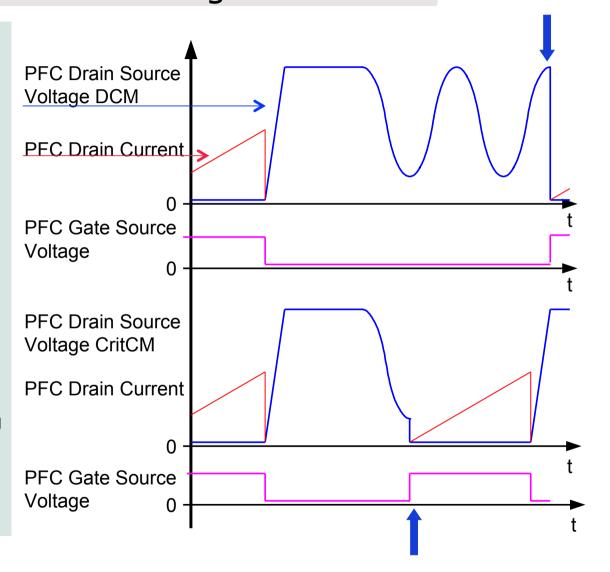
Features	Benefits		
> High voltage startup cell (600 V)	 Fast time to light < 0.5 s Eliminate external components for voltage dividing 		
> CrCM/ DCM operation	Wide range applications, suitable for dimming LED converter in the current range between 1% up to 100%		
> Burst mode capability	> Low standby power		
> Multiple primary side control configurations	Isolated flyback with CV modeNon-isolated flyback with CC or CV mode		
> Optimized one stage PFC+ flyback	Low line power factor > 0.95Low line current THD < 20%		
 Direct feedback Stable V_{REF}, V_{CS} over temperature 	> Very accurate CV or CC regulation		
> Recommended dimming circuitry	 Triac dimming capable (with correctly designed converter input) 		
> ZX, CS pins to prevent abnormal conditions	> Over voltage and over current protection		
> Wide input voltage range	> Covering 85 $V_{AC} \sim 305 V_{AC}$		
Multiple LED topology configuration: flyback, buck, boost and SEPIC	> Versatile in LED designs		


Key differentiator High voltage start-up cell

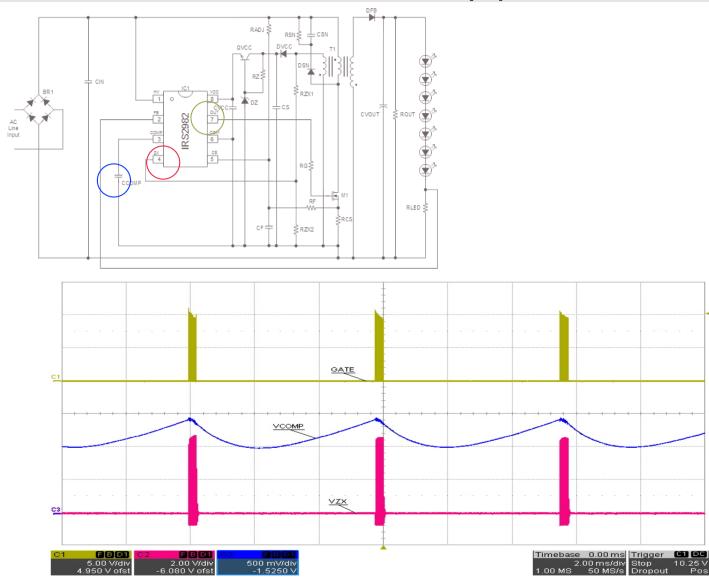


Startup mode

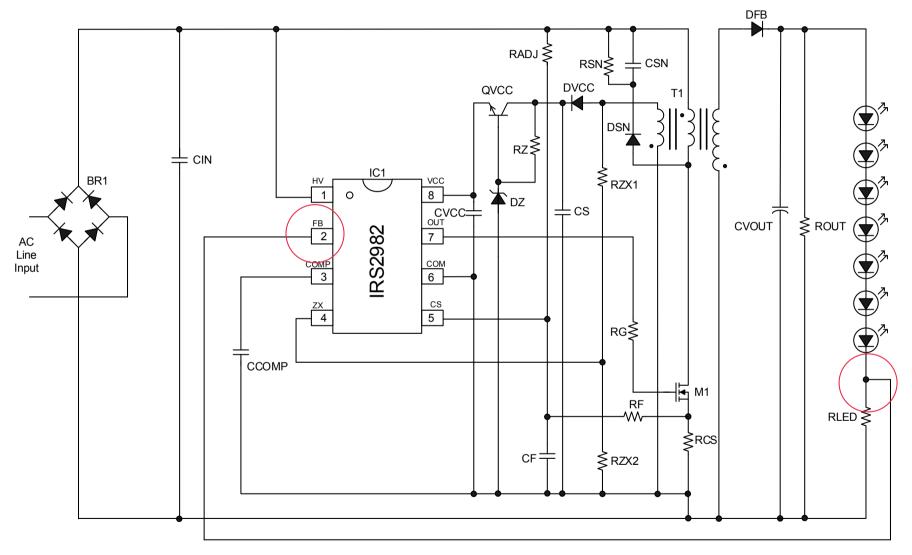
IHV vs. VHV over temperature



CrCM: Standard to most LED controller DCM: IRS2982S key feature for light load

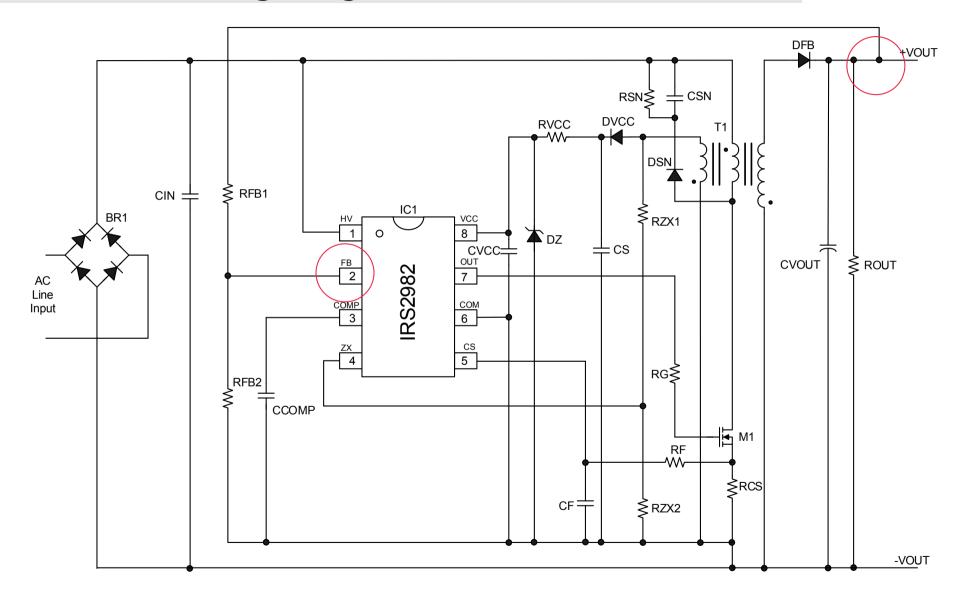

The IRS2982S normally operates in critical conduction mode (CrCM), also known as transition or boundary mode. The IRS2982S includes a minimum off time limit (tOFFMIN) of $\sim 3~\mu s$ so that if the ZX pin input transitions high and then low before tOFFMIN expires, the gate drive output will not transition high again until the end of this period (DCM mode).

This function extends the operating range of the converter allowing operation down to very low duty cycles. This thereby enables dimming designs to be implemented as well as limiting operating frequency to prevent overheating of the circuit inductor, MOSFET and snubber components.

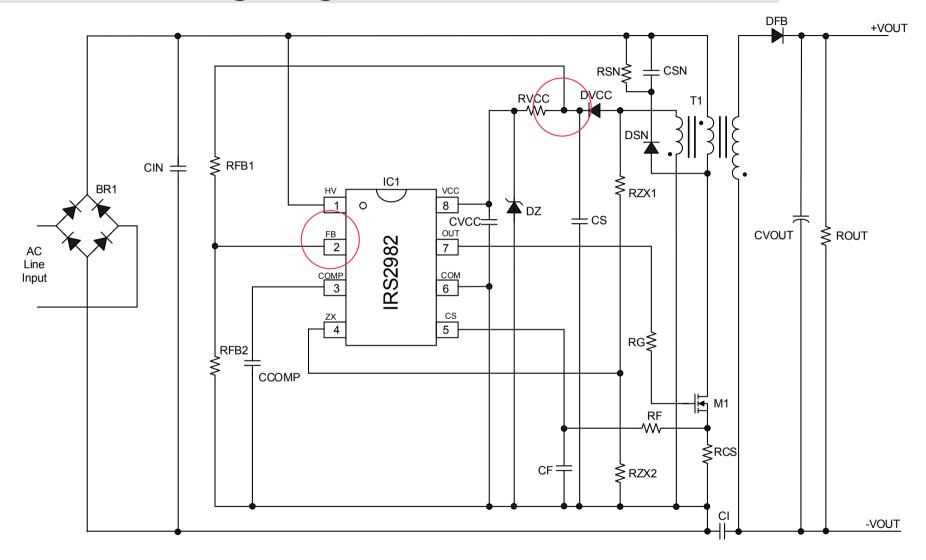

Burst mode to minimize standby power

Gate drive (yellow), VCOMP (blue), VZX (red)

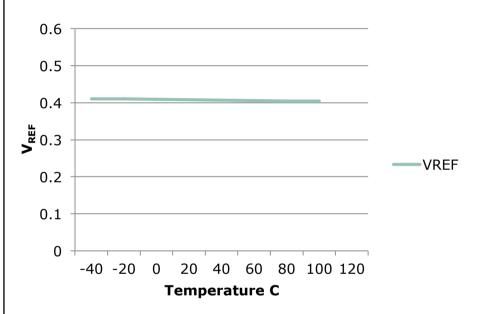
Non-isolated flyback Constant current regulation

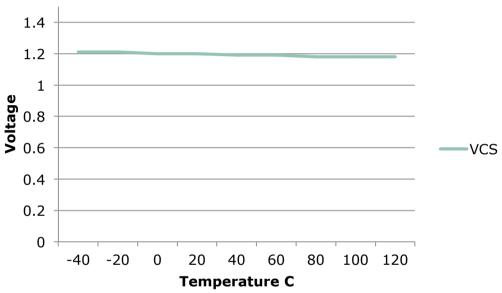


- > Can be used in some non-isolated LED lamps/ bulbs needing high PF and accurate current
- > Triac dimming is also possible with bleed and damper network

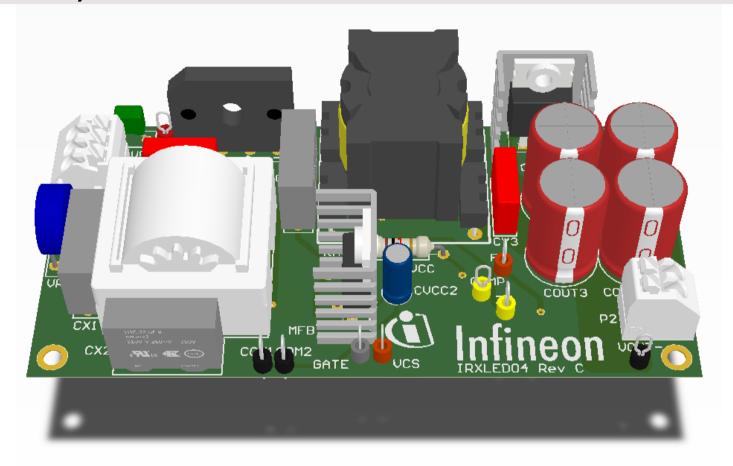

Non-isolated flyback Constant voltage regulation

Isolated flyback key application Constant voltage regulation



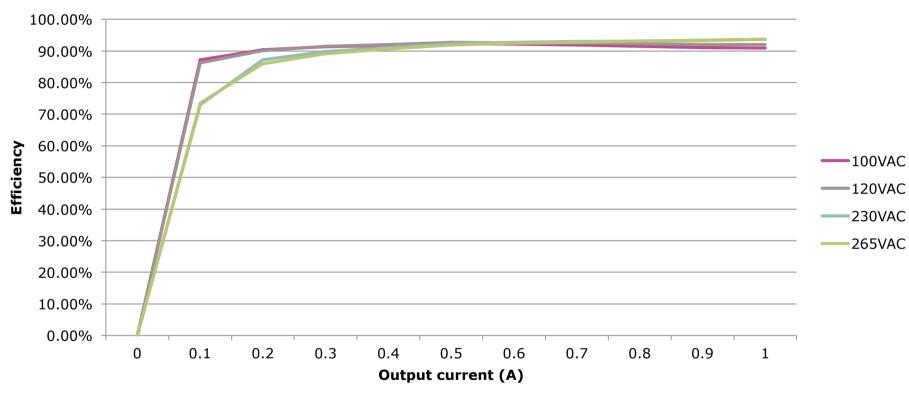

V_{REF} and V_{CS} over temperature for accurate CV and CC regulation

V_{REF} vs. temperature


V_{CSTH} vs. temperature

- V_{REF} tolerance +/- 2%
- V_{CSTH} tolerance +/- 5%

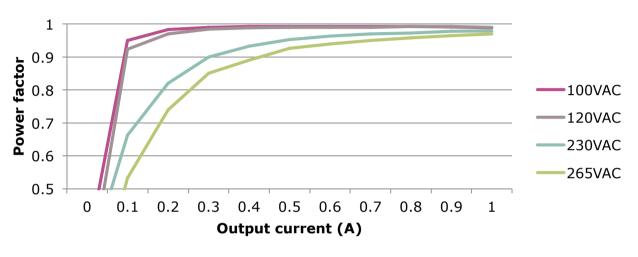
IRXLED04 50 W flyback evaluation board



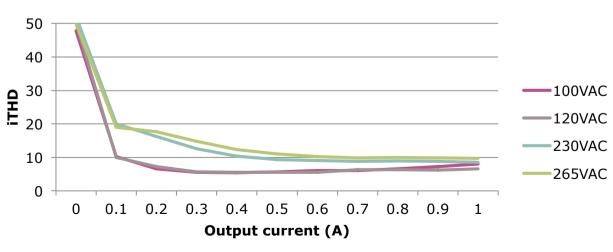
- Isolated flyback with CV
- > 100 to 265 V_{AC} input, 55 V nominal output up to 1 A
- > High power factor, low iTHD over wide line/load range
- Board size 4.4" (112 mm) x 2.2" (56 mm)

IRS2982S efficiency (50 V_{OUT}, 55 W)

Efficiency



- Low line efficiency > 90% starting 20% load
- > High line efficiency > 90% starting 40% load

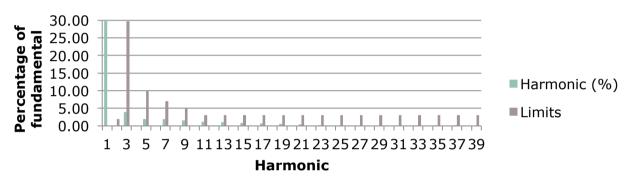


> 0.9 PF and < 20% iTHD for low line

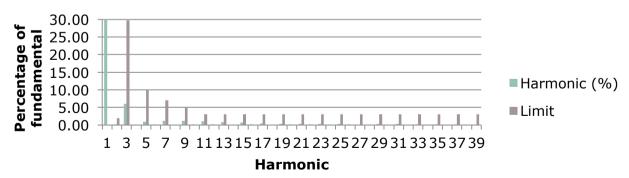
Power factor

iTHD

Harmonic limits EN61000-3-2 Class C (Lighting)



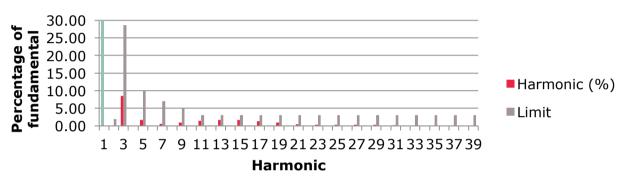
Requirements	Harmonics Limits Class C according EN 61000-3-2 for System Power > 25W			
	Harmonics order n	Maximum value expressed as a percentage of the fundamental input current		
	$ \begin{array}{c} 2\\3\\5\\7\\9\\11 \leq n \leq 39 \end{array} $	<2% <30 λ % 10% <7% <5% <3% λ = power factor		



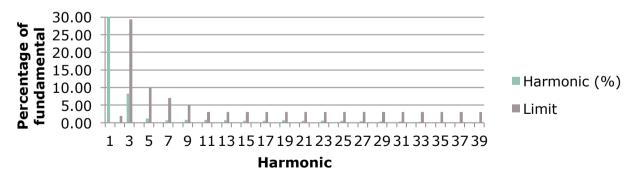
Harmonics at 120 V_{AC}

120 V_{AC}, 50% load, line current harmonics (%)

120 V_{AC}, 100% load, line current harmonics (%)



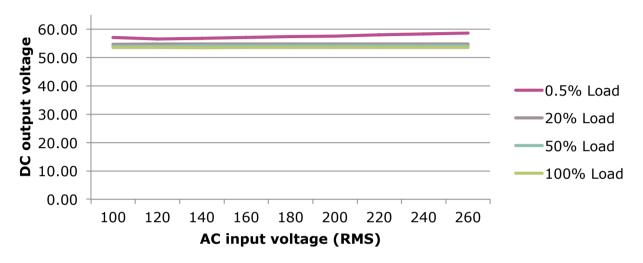
Tested using an electronic pure sine wave AC source, IRS2982S easily meets the standard



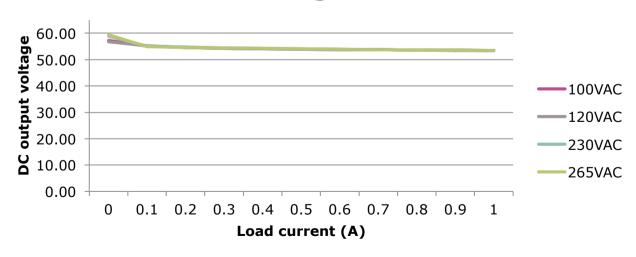
Harmonics at 230 V_{AC}

230 V_{AC}, 50% load, line current harmonics (%)

230 V_{AC}, 100% load, line current harmonics (%)

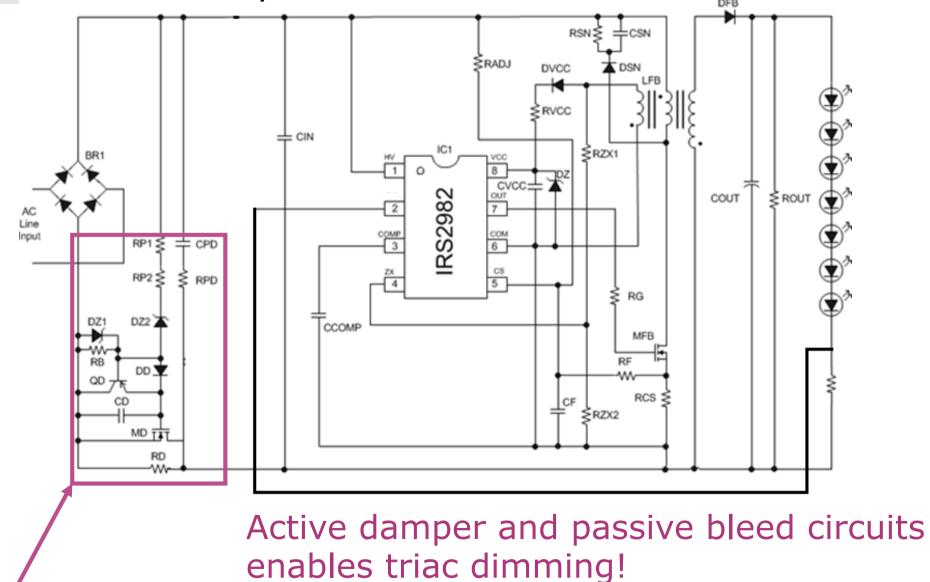


Tested using an electronic pure sine wave AC source, IRS2982S easily meets the standard

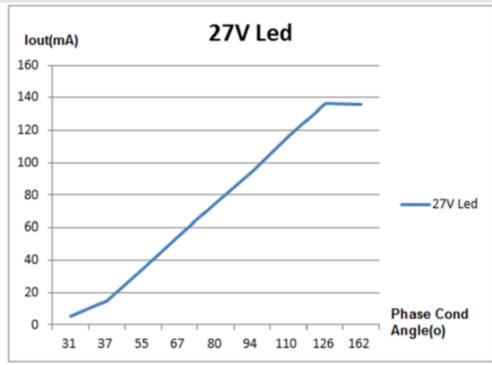


Stable line and load regulation

Line regulation

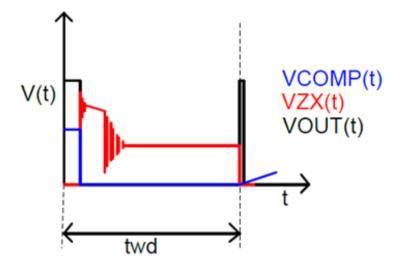

Load regulation

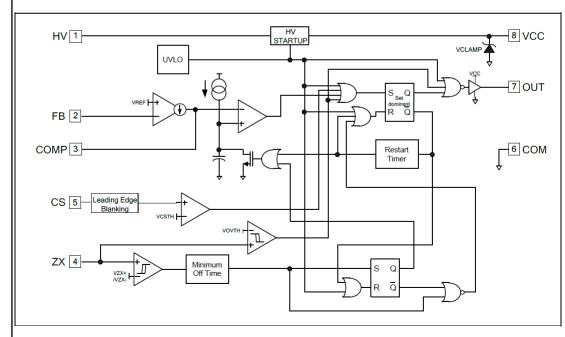
IRS2982



Triac dimmable flyback LED driver

IRS2982 Stable and flicker free dimming




Dimming curve

Load	Vin(V)	Pin(W)	PF	THD(%)	Vout (V)	lout (mA)	Pout (W)	Eff(%)
27V LED	200	4.507	0.959	15.3	27	134.1	3.62	80.34
	220	4.6	0.949	17	27.01	136.5	3.69	80.15
	242	4.713	0.937	19	27.04	139.2	3.76	79.86
	265	4.846	0.923	21	27.07	142.2	3.85	79.43
	220				32	no load		

Over voltage protection through ZX input

The ZX input is a multi-functional, used for zero crossing detection and output over voltage limiting. If the load becomes disconnected in a flyback or boost converter the output voltage can become very high causing damage to components as well as presenting an electrical hazard. In order to protect against this the IRS2982 senses the output voltage indirectly through the ZX input connected to the auxiliary winding, which is proportional to the output voltage. If the ZX input voltage exceeds VOVTH when the MOSFET switches off, the gate drive remains switched off for a period tWD ($\sim 100 \mu s$) before starting the next cycle regardless of when the ZX voltage transitions low. The IRS2982 also discharges the COMP capacitor to so that the next cycle will begin at minimum duty cycle and ramp up slowly. This protection scheme allows the load to be "hot" connected and disconnected from the converter output without risk of damaging the circuit by high voltages appearing at the output. Care should be taken however to avoid damage to LED loads due to output capacitor discharge.

Over current protection through CS input

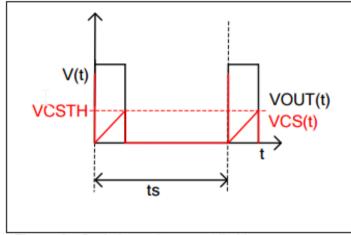
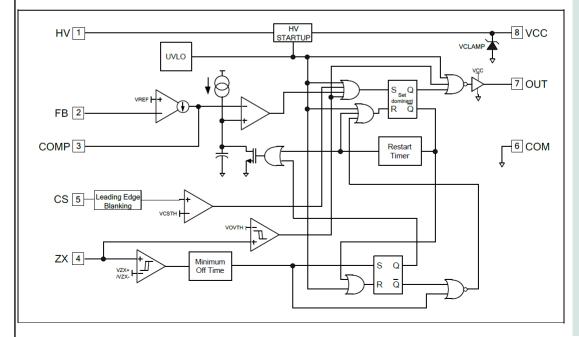



Figure 3: Cycle by cycle current limiting

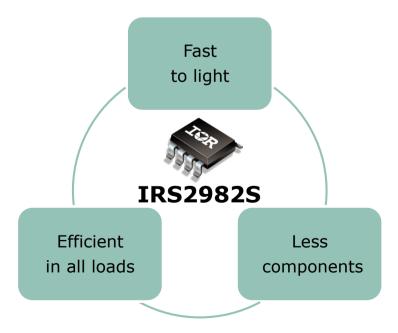
Primary MOSFET current is sensed through a shunt resistor (RCS) connected from the source of the flyback MOSFET switch to the DC bus return. This current waveform is a high frequency ramp rising from zero at the beginning of each switching cycle to reach a peak level at the point the MOSFET is switched off and remaining at zero during the off time. At very low input voltages the voltage or current regulation loop would demand a very high peak current, which may exceed the maximum rating of the transformer. To prevent saturation from occurring, the IRS2982 provides cycle by cycle primary current limiting with a threshold VCSTH at the CS pin input. Under low line or fault conditions where the MOSFET current is abnormally high the gate drive is switched off after the blanking time tBLANK. Leading edge blanking is necessary to avoid false triggering due to the fast high current switch on transient that occurs at switch on of the MOSFET resulting from discharge of parasitic capacitances.

Agenda

- 1 Trends and solutions
- 2 IRS2982S in Infineon's LED portfolio
- 3 IRS2982S features and benefits
- 4 IRS2982S value proposition
- 5 Summary
- 6 Support material

IRS2982S value arguments

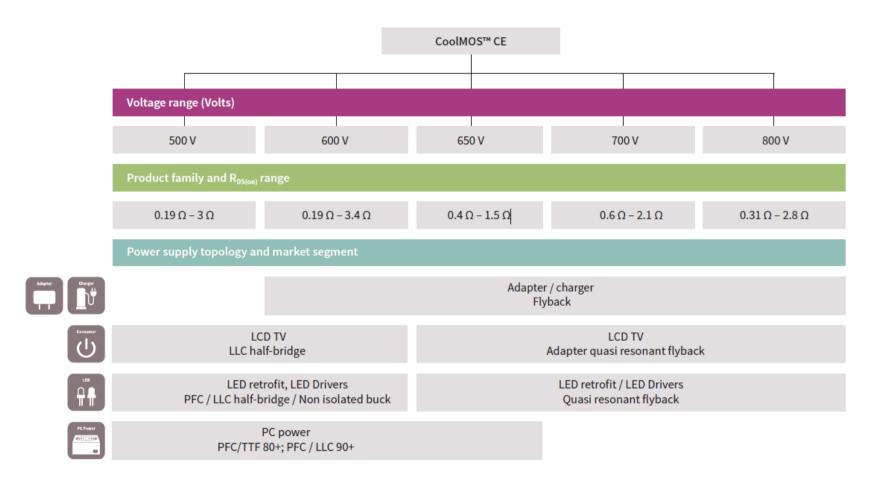
Benefits		IFX LED flyback controller IRS2982S
Strong arguments	Fast light delivery and simpler design	 High voltage regulator enables time to light within 0.5 second High voltage startup cell, DCM modes eliminates 5~ 10 external components
	Low standby power	> Burst mode capability reduce standby power to less than 500 mW
	Low light load loss	> DCM operation enables wider operation range from 1 to 100%
Medium arguments	Versatile in LED designs	 IRS2982S is suitable for multiple topologies including: flyback, buck, boost and sepic
Soft arguments	Capacity	Infineon has the biggest power semiconductor capacity within the industry and is by far the biggest investor in capacity for power semiconductors
	Product portfolio	Infineon provides both LED controllers, high voltage MOSFET, sensors as well as microcontrollers
	Robustness	Infineon offers highly ruggedized performance and proven reliability


Agenda

- 1 Trends and solutions
- 2 IRS2982S in Infineon's LED portfolio
- 3 IRS2982S features and benefits
- 4 IRS2982S value proposition
- 5 Summary
- 6 Support material

Summary

- LED driver customers are demanding more features, low power loss at light load and standby, while trying to maintain system cost
- IRS2982S's HV startup, CrCM/ DCM/ Burst mode, versatile configurations enables fast to light with less component counts as well as better efficiency overall



Agenda

- 1 Trends and solutions
- 2 IRS2982S in Infineon's LED portfolio
- IRS2982S features and benefits
- 4 IRS2982S value proposition
- 5 Summary
- 6 Support material

IRS2982S pairs with CoolMOS™ CE for price-driven applications

Superjunction technology at the price of a planar MOSFET

Why CoolMOS™ CE?

- Superjunction device (SJ): as such it delivers low conduction and switching losses, improves efficiency and ultimately reduces power consumption
- Broad portfolio: 500 V, 600 V, 650 V, 700 V and 800 V devices available, best fitting LED lighting
- Attractive price position: with no compromise on proven CoolMOS™ quality
- Flexibility: suitable for hard and soft switching applications
- Fast design-in: ease of use enables customers to reduce the design in cycle and compete in dynamic markets

Top 7 reasons for choosing Infineon beyond product performance

Benefits

- 1 Product portfolio
- **2** Capacity
- **3** Lead times
- 4 Delivery performance
- **5** Quality
- **6** Price competitiveness
- **7** Design-in support

Provided by our CE solution...

- We own a broad portfolio covering 5 voltage classes in both TH and SMD packages and exceed by > 3 times our closest competitor
- We own the world's largest capacity for power devices, with 3 dedicated frontends and 4 backends
- We secure supply during market upswing
- We understand lighting market's dynamics and offer ≤ 6 weeks lead time
- › Our delivery performance is constantly ≥ 95%
- Our field failure rates are on average < 0.2 PPM*</p>
- With full implementation in 300 mm we gained economy of scale and improved our cost structure
- We have a large field application engineering team to provide professional & flexible support for your design

Note: *1 PPM = 1 failure per 1 Million pcs shipped

Recommendations for mid & low power QR flyback topologies

800 V	R _{DS(ON)} [mΩ]	TO-220 FullPAK	TO-252 DPAK	TO-251 IPAK
	2800		IPD80R2K8CE	IPU80R2K8CE
	1400	IPA80R1K4CE	IPD80R1K4CE	IPU80R1K4CE
	1000	IPA80R1K0CE	IPD80R1K0CE	IPU80R1K0CE
	650	IPA80R650CE		
	460	IPA80R460CE		
	310	IPA80R310CE		

Support material

Collaterals and brochures

> Presentations

- > PMM DCDC PL16 sharepoint site
- PMM pool presentations

Technical material

- > Application notes
- Datasheets
- Eval boards IRXLED04
- > IRS2982S datasheet
- > ANEVAL 201602 PL16 017 IRXLED04

Videos

Contact

- > Product manager
- > Application manager
- Josh.feng@infineon.com
- Peter.Green@infineon.com

IRXLED04 50 W flyback evaluation board

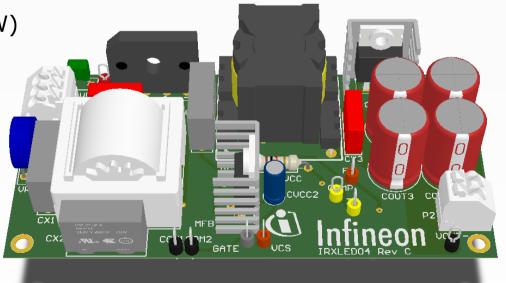
Features

Input voltage range: 85–265 V_{AC}

Input voltage frequency: 47–63 Hz

> Regulated main output voltage: $55 V_{DC} / 0.9 A$

> Harmonics: according to EN61000-3-2 Class-C


> EMI: according to EN55015

Safety: according to EN61347-2-13

Replaces IRXLED03

Board dimensions: 4.4" (L) x 2.2" (W)

Available in April 2016

Part of your life. Part of tomorrow.

